DFT investigations of structural and electronic properties of gallium arsenide (GAAS)
First principles calculations for structural and electronic properties of GaAs have been reported using a full potential linearized augmented plane wave (FP-LAPW) scheme of calculations developed within density functional theory (DFT). We use in this study local density approximation (LDA), Perdew-B...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
2012
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/46812/ http://dx.doi.org/10.1063/1.4757439 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Summary: | First principles calculations for structural and electronic properties of GaAs have been reported using a full potential linearized augmented plane wave (FP-LAPW) scheme of calculations developed within density functional theory (DFT). We use in this study local density approximation (LDA), Perdew-Burke-Ernzerhof parameterized generalized gradient approximation (PBE-GGA), Wu-Cohen parameterized GGA (WC-GGA) executed in WIEN2k code. In addition, to calculate band structure with high accuracy we used modified Becke-Johnson exchange potential (MBJ) + LDA approach. Our calculated lattice constant with GGA-WC is in good agreement to experimental value than LDA and PBE-GGA. Whereas our calculations for the band structure show that MBJ+ LDA approach gives much better results for band gap value as compared to other exchange correlation approaches. |
---|