Metabolites production improvement by identifying minimal genomes and essential genes using flux balance analysis

With the advancement in metabolic engineering technologies, reconstruction of the genome of host organisms to achieve desired phenotypes can be made. However, due to the complexity and size of the genome scale metabolic network, significant components tend to be invisible. We proposed an approach to...

Full description

Saved in:
Bibliographic Details
Main Authors: Salleh, A. H. M., Mohamad, M. S., Deris, S., Illias, R. M.
Format: Article
Published: Inderscience Publishers 2015
Subjects:
Online Access:http://eprints.utm.my/id/eprint/58537/
http://dx.doi.org/10.1504/IJDMB.2015.068955
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Description
Summary:With the advancement in metabolic engineering technologies, reconstruction of the genome of host organisms to achieve desired phenotypes can be made. However, due to the complexity and size of the genome scale metabolic network, significant components tend to be invisible. We proposed an approach to improve metabolite production that consists of two steps. First, we find the essential genes and identify the minimal genome by a single gene deletion process using Flux Balance Analysis (FBA) and second by identifying the significant pathway for the metabolite production using gene expression data. A genome scale model of Saccharomyces cerevisiae for production of vanillin and acetate is used to test this approach. The result has shown the reliability of this approach to find essential genes, reduce genome size and identify production pathway that can further optimise the production yield. The identified genes and pathways can be extendable to other applications especially in strain optimisation.