Polydimethylsiloxane microchannel fabrication from 3d printed mold

3D printing has a great effect in microfluidics field of study due to fastest and cheapest way in producing a microchannel. In this work, replication, characterization and testing of PDMS microchannel have been demonstrated by using 3D printed mold technique. The characterization of the 3D printed m...

Full description

Saved in:
Bibliographic Details
Main Authors: Abidin, Ummikalsom, Rusli, Muhammad Qadri
Format: Article
Published: Jurnal Mekanikal 2018
Subjects:
Online Access:http://eprints.utm.my/id/eprint/82175/
https://jurnalmekanikal.utm.my
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Description
Summary:3D printing has a great effect in microfluidics field of study due to fastest and cheapest way in producing a microchannel. In this work, replication, characterization and testing of PDMS microchannel have been demonstrated by using 3D printed mold technique. The characterization of the 3D printed mold and replicated PDMS microchannel is performed using an optical and scanning electron microscope (SEM). From the 3D printed microchannel mold characterized, it is observed that as the design width increases, the accuracy of the 3D printer increases for the width but decreases for thickness. Finally, PDMS microchannel and PDMS base were successfully bonded using a plasma cleaner set for 12 seconds at 200 mTorr. A functional test was then conducted using flowing colour dyed water with a maximum volumetric flow rate of 9 ml/min from a syringe pump into the PDMS microchannel. No leakage was observed during the testing due to the strong bond between the flat PDMS surfaces. Replication of PDMS microchannel using 3D printed mold technique has proven to save time and more economically. Therefore, 3D printed mold technique is proven as latest solution and a viable option to expedite and mass produce PDMS microchannels for the market.