Thermomigration in lead-free solder joints

In the next generation nanoelectronics and SiC based electronic packaging, current density and temperature gradient will be larger in orders of magnitude. Electromigration and thermomigration are considered to be major road blocks leading to realisation of nanoelectronics and SiC based high tempera...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdul Hamid, M. F, S., Li, Basaran, C.
Format: Article
Published: Inderscience Publishers 2008
Subjects:
Online Access:http://eprints.utm.my/id/eprint/8493/
http://dx.doi.org/10.1504/IJMSI.2008.018898
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
id my.utm.8493
record_format eprints
spelling my.utm.84932009-04-30T09:24:36Z http://eprints.utm.my/id/eprint/8493/ Thermomigration in lead-free solder joints Abdul Hamid, M. F S., Li Basaran, C. TJ Mechanical engineering and machinery In the next generation nanoelectronics and SiC based electronic packaging, current density and temperature gradient will be larger in orders of magnitude. Electromigration and thermomigration are considered to be major road blocks leading to realisation of nanoelectronics and SiC based high temperature power electronics. In this paper, damage mechanics of 95.5Sn4Ag0.5Cu (SAC405) lead-free solder joints under high temperature gradients have been studied. This paper presents observations on samples which were subjected to 1000°C/cm thermal gradient for two hours, 286 hours, 712 hours and 1156 hours. It was observed that samples subjected to thermal gradient did not develop a Cu3Sn intermetallic compound (IMC) layer at the hot side due to Cu migration to the cold side thus causing insufficient Cu mass concentration to form Cu3Sn. On the other hand, in samples subjected to isothermal annealing exhibited IMC growth. In samples subjected to thermomigration, near the cold side the Cu concentration is significantly higher, compared to hot side. Extensive surface hardness testing showed increase in hardness from the hot to cold sides, which indicates vacancy migration and Sn grain coarsening are in the opposing direction Inderscience Publishers 2008 Article PeerReviewed Abdul Hamid, M. F and S., Li and Basaran, C. (2008) Thermomigration in lead-free solder joints. International Journal of Materials and Structural Integrity, 2 (1-2). pp. 11-34. ISSN 1745-0055 http://dx.doi.org/10.1504/IJMSI.2008.018898 10.1504/IJMSI.2008.018898
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
Abdul Hamid, M. F
S., Li
Basaran, C.
Thermomigration in lead-free solder joints
description In the next generation nanoelectronics and SiC based electronic packaging, current density and temperature gradient will be larger in orders of magnitude. Electromigration and thermomigration are considered to be major road blocks leading to realisation of nanoelectronics and SiC based high temperature power electronics. In this paper, damage mechanics of 95.5Sn4Ag0.5Cu (SAC405) lead-free solder joints under high temperature gradients have been studied. This paper presents observations on samples which were subjected to 1000°C/cm thermal gradient for two hours, 286 hours, 712 hours and 1156 hours. It was observed that samples subjected to thermal gradient did not develop a Cu3Sn intermetallic compound (IMC) layer at the hot side due to Cu migration to the cold side thus causing insufficient Cu mass concentration to form Cu3Sn. On the other hand, in samples subjected to isothermal annealing exhibited IMC growth. In samples subjected to thermomigration, near the cold side the Cu concentration is significantly higher, compared to hot side. Extensive surface hardness testing showed increase in hardness from the hot to cold sides, which indicates vacancy migration and Sn grain coarsening are in the opposing direction
format Article
author Abdul Hamid, M. F
S., Li
Basaran, C.
author_facet Abdul Hamid, M. F
S., Li
Basaran, C.
author_sort Abdul Hamid, M. F
title Thermomigration in lead-free solder joints
title_short Thermomigration in lead-free solder joints
title_full Thermomigration in lead-free solder joints
title_fullStr Thermomigration in lead-free solder joints
title_full_unstemmed Thermomigration in lead-free solder joints
title_sort thermomigration in lead-free solder joints
publisher Inderscience Publishers
publishDate 2008
url http://eprints.utm.my/id/eprint/8493/
http://dx.doi.org/10.1504/IJMSI.2008.018898
_version_ 1643645001418145792