Stemming text-based web page classification using machine learning algorithms: a comparison

The research aim is to determine the effect of word-stemming in web pages classification using different machine learning classifiers, namely Naive Bayes (NB), k-Nearest Neighbour (k-NN), Support Vector Machine (SVM) and Multilayer Perceptron (MP). Each classifiers' performance is evaluated in...

Full description

Saved in:
Bibliographic Details
Main Authors: Razali, A., Daud, S. M., Zin, N. A. M., Shahidi, F.
Format: Article
Language:English
Published: Science and Information Organization 2020
Subjects:
Online Access:http://eprints.utm.my/id/eprint/86791/1/AnsariRazali2020_StemmingTextBasedWebPageClassification.pdf
http://eprints.utm.my/id/eprint/86791/
https://dx.doi.org/10.14569/ijacsa.2020.0110171
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English

Similar Items