Stemming text-based web page classification using machine learning algorithms: a comparison
The research aim is to determine the effect of word-stemming in web pages classification using different machine learning classifiers, namely Naive Bayes (NB), k-Nearest Neighbour (k-NN), Support Vector Machine (SVM) and Multilayer Perceptron (MP). Each classifiers' performance is evaluated in...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Science and Information Organization
2020
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/86791/1/AnsariRazali2020_StemmingTextBasedWebPageClassification.pdf http://eprints.utm.my/id/eprint/86791/ https://dx.doi.org/10.14569/ijacsa.2020.0110171 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Language: | English |
Be the first to leave a comment!