Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection
Ochratoxin A (OTA) has harmful effects to human and animal health; therefore, sensitive and selective detection of OTA is highly demanded. Herein, an ultrasensitive electrochemical aptasensor electrode comprising electrospun MXene/polyvinylidene fluoride (Ti3C2Tx/PVDF) nanofiber composite is present...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Elsevier Ltd
2022
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130371663&doi=10.1016%2fj.foodchem.2022.133105&partnerID=40&md5=86fc5c616235a8266264b126078d8dda http://eprints.utp.edu.my/33011/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Petronas |
id |
my.utp.eprints.33011 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.330112022-06-09T07:35:59Z Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection Al-Dhahebi, A.M. Jose, R. Mustapha, M. Saheed, M.S.M. Ochratoxin A (OTA) has harmful effects to human and animal health; therefore, sensitive and selective detection of OTA is highly demanded. Herein, an ultrasensitive electrochemical aptasensor electrode comprising electrospun MXene/polyvinylidene fluoride (Ti3C2Tx/PVDF) nanofiber composite is presented. Addition of Ti3C2Tx up to 13 effectively increased the fiber diameter and lowered the β-phase of PVDF nanofibers, consequently lowering the charge transfer resistance. The nanofiber composite is then coated on the screen-printed carbon electrode to chemically functionalized with saline and aldehyde groups for efficient aptamer loading. The optimized aptasensor demonstrated sensitive detection of OTA over the dynamic concentration range from 1 fg mL�1 to 1 ng mL�1 with a limit of detection of 2.15 fg mL�1 and quantification limit of 6.52 fg mL�1, with high selectivity. The aptasensor could detect the OTA at femtogram per milliliter concentration in grape juice samples, demonstrating its enormous potential for OTA detection in food industry. © 2022 Elsevier Ltd Elsevier Ltd 2022 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130371663&doi=10.1016%2fj.foodchem.2022.133105&partnerID=40&md5=86fc5c616235a8266264b126078d8dda Al-Dhahebi, A.M. and Jose, R. and Mustapha, M. and Saheed, M.S.M. (2022) Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection. Food Chemistry, 390 . http://eprints.utp.edu.my/33011/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
Ochratoxin A (OTA) has harmful effects to human and animal health; therefore, sensitive and selective detection of OTA is highly demanded. Herein, an ultrasensitive electrochemical aptasensor electrode comprising electrospun MXene/polyvinylidene fluoride (Ti3C2Tx/PVDF) nanofiber composite is presented. Addition of Ti3C2Tx up to 13 effectively increased the fiber diameter and lowered the β-phase of PVDF nanofibers, consequently lowering the charge transfer resistance. The nanofiber composite is then coated on the screen-printed carbon electrode to chemically functionalized with saline and aldehyde groups for efficient aptamer loading. The optimized aptasensor demonstrated sensitive detection of OTA over the dynamic concentration range from 1 fg mL�1 to 1 ng mL�1 with a limit of detection of 2.15 fg mL�1 and quantification limit of 6.52 fg mL�1, with high selectivity. The aptasensor could detect the OTA at femtogram per milliliter concentration in grape juice samples, demonstrating its enormous potential for OTA detection in food industry. © 2022 Elsevier Ltd |
format |
Article |
author |
Al-Dhahebi, A.M. Jose, R. Mustapha, M. Saheed, M.S.M. |
spellingShingle |
Al-Dhahebi, A.M. Jose, R. Mustapha, M. Saheed, M.S.M. Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection |
author_facet |
Al-Dhahebi, A.M. Jose, R. Mustapha, M. Saheed, M.S.M. |
author_sort |
Al-Dhahebi, A.M. |
title |
Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection |
title_short |
Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection |
title_full |
Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection |
title_fullStr |
Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection |
title_full_unstemmed |
Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection |
title_sort |
ultrasensitive aptasensor using electrospun mxene/polyvinylidene fluoride nanofiber composite for ochratoxin a detection |
publisher |
Elsevier Ltd |
publishDate |
2022 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130371663&doi=10.1016%2fj.foodchem.2022.133105&partnerID=40&md5=86fc5c616235a8266264b126078d8dda http://eprints.utp.edu.my/33011/ |
_version_ |
1738657443052781568 |