Online Machine Learning from Non-stationary Data Streams in the Presence of Concept Drift and Class Imbalance: A Systematic Review
In IoT environment applications generate continuous non-stationary data streams with in-built problems of concept drift and class imbalance which cause classifier performance degradation. The imbalanced data affects the classifier during concept detection and concept adaptation. In general, for conc...
Saved in:
Main Authors: | , , , , , , |
---|---|
格式: | Article |
語言: | English |
出版: |
Universiti Utara Malaysia Press
2024
|
主題: | |
在線閱讀: | https://repo.uum.edu.my/id/eprint/30350/1/JICT%2023%2001%202024%20105-139.pdf https://doi.org/10.32890/jict2024.23.1.5 https://repo.uum.edu.my/id/eprint/30350/ https://e-journal.uum.edu.my/index.php/jict/article/view/20733 https://doi.org/10.32890/jict2024.23.1.5 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Universiti Utara Malaysia |
語言: | English |