Online Machine Learning from Non-stationary Data Streams in the Presence of Concept Drift and Class Imbalance: A Systematic Review
In IoT environment applications generate continuous non-stationary data streams with in-built problems of concept drift and class imbalance which cause classifier performance degradation. The imbalanced data affects the classifier during concept detection and concept adaptation. In general, for conc...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , , |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Universiti Utara Malaysia Press
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://repo.uum.edu.my/id/eprint/30350/1/JICT%2023%2001%202024%20105-139.pdf https://doi.org/10.32890/jict2024.23.1.5 https://repo.uum.edu.my/id/eprint/30350/ https://e-journal.uum.edu.my/index.php/jict/article/view/20733 https://doi.org/10.32890/jict2024.23.1.5 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|