Fundamentals of stochastic filtering
The objective of stochastic filtering is to determine the best estimate for the state of a stochastic dynamical system from partial observations. The solution of this problem in the linear case is the well known Kalman-Bucy filter which has found widespread practical application. The purpose of this...
Saved in:
Main Authors: | , |
---|---|
Format: | Book |
Language: | English |
Published: |
Springer
2017
|
Subjects: | |
Online Access: | http://repository.vnu.edu.vn/handle/VNU_123/30848 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Vietnam National University, Hanoi |
Language: | English |
id |
oai:112.137.131.14:VNU_123-30848 |
---|---|
record_format |
dspace |
spelling |
oai:112.137.131.14:VNU_123-308482020-06-21T09:50:57Z Fundamentals of stochastic filtering Bain, Alan Crisan, Dan Mathematics Statistics ; Stochastic processes ; Filters (Mathematics) 519.22 The objective of stochastic filtering is to determine the best estimate for the state of a stochastic dynamical system from partial observations. The solution of this problem in the linear case is the well known Kalman-Bucy filter which has found widespread practical application. The purpose of this book is to provide a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. The book is intended as a reference for graduate students and researchers interested in the field. It is also suitable for use as a text for a graduate level course on stochastic filtering. Suitable exercises and solutions are included. 2017-04-19T02:11:37Z 2017-04-19T02:11:37Z 2009 Book 978-0-387-76895-3 http://repository.vnu.edu.vn/handle/VNU_123/30848 en 394 p. application/pdf Springer |
institution |
Vietnam National University, Hanoi |
building |
VNU Library & Information Center |
country |
Vietnam |
collection |
VNU Digital Repository |
language |
English |
topic |
Mathematics Statistics ; Stochastic processes ; Filters (Mathematics) 519.22 |
spellingShingle |
Mathematics Statistics ; Stochastic processes ; Filters (Mathematics) 519.22 Bain, Alan Crisan, Dan Fundamentals of stochastic filtering |
description |
The objective of stochastic filtering is to determine the best estimate for the state of a stochastic dynamical system from partial observations. The solution of this problem in the linear case is the well known Kalman-Bucy filter which has found widespread practical application. The purpose of this book is to provide a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods.
The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices.
The book is intended as a reference for graduate students and researchers interested in the field. It is also suitable for use as a text for a graduate level course on stochastic filtering. Suitable exercises and solutions are included. |
format |
Book |
author |
Bain, Alan Crisan, Dan |
author_facet |
Bain, Alan Crisan, Dan |
author_sort |
Bain, Alan |
title |
Fundamentals of stochastic filtering |
title_short |
Fundamentals of stochastic filtering |
title_full |
Fundamentals of stochastic filtering |
title_fullStr |
Fundamentals of stochastic filtering |
title_full_unstemmed |
Fundamentals of stochastic filtering |
title_sort |
fundamentals of stochastic filtering |
publisher |
Springer |
publishDate |
2017 |
url |
http://repository.vnu.edu.vn/handle/VNU_123/30848 |
_version_ |
1680963708920004608 |