Exponentially Dichotomous Operators and Applications
In this monograph the natural evolution operators of autonomous first-order differential equations with exponential dichotomy on an arbitrary Banach space are studied in detail. Characterizations of these so-called exponentially dichotomous operators in terms of their resolvents and additive and mul...
Saved in:
Main Author: | |
---|---|
Format: | Book |
Language: | English |
Published: |
Springer
2017
|
Subjects: | |
Online Access: | http://repository.vnu.edu.vn/handle/VNU_123/31726 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Vietnam National University, Hanoi |
Language: | English |
Summary: | In this monograph the natural evolution operators of autonomous first-order differential equations with exponential dichotomy on an arbitrary Banach space are studied in detail. Characterizations of these so-called exponentially dichotomous operators in terms of their resolvents and additive and multiplicative perturbation results are given. The general theory of the first three chapters is then followed by applications to Wiener-Hopf factorization and Riccati equations, transport equations, diffusion equations of indefinite Sturm-Liouville type, noncausal infinite-dimensional linear continuous-time systems, and functional differential equations of mixed type. |
---|