Exponentially Dichotomous Operators and Applications

In this monograph the natural evolution operators of autonomous first-order differential equations with exponential dichotomy on an arbitrary Banach space are studied in detail. Characterizations of these so-called exponentially dichotomous operators in terms of their resolvents and additive and mul...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Mee, C. V. M. van der
التنسيق: كتاب
اللغة:English
منشور في: Springer 2017
الموضوعات:
515
الوصول للمادة أونلاين:http://repository.vnu.edu.vn/handle/VNU_123/31726
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Vietnam National University, Hanoi
اللغة: English
الوصف
الملخص:In this monograph the natural evolution operators of autonomous first-order differential equations with exponential dichotomy on an arbitrary Banach space are studied in detail. Characterizations of these so-called exponentially dichotomous operators in terms of their resolvents and additive and multiplicative perturbation results are given. The general theory of the first three chapters is then followed by applications to Wiener-Hopf factorization and Riccati equations, transport equations, diffusion equations of indefinite Sturm-Liouville type, noncausal infinite-dimensional linear continuous-time systems, and functional differential equations of mixed type.