Optimization of microwave-assisted solvent extraction of oil from kenaf seed

Biodiesel, an alternative diesel fuel, has become more attractive recently because it has a lot of environmental benefits. It is made from renewable biological sources such as vegetable oils and animal fats. Furthermore, it is biodegradable, nontoxic and has low emission profiles. Considerable resea...

Full description

Saved in:
Bibliographic Details
Main Author: Nguyen, Pham Huyen Huong
Format: text
Language:English
Published: Animo Repository 2009
Subjects:
Online Access:https://animorepository.dlsu.edu.ph/etd_masteral/3810
https://animorepository.dlsu.edu.ph/context/etd_masteral/article/10648/viewcontent/CDTG004661_P.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: De La Salle University
Language: English
Description
Summary:Biodiesel, an alternative diesel fuel, has become more attractive recently because it has a lot of environmental benefits. It is made from renewable biological sources such as vegetable oils and animal fats. Furthermore, it is biodegradable, nontoxic and has low emission profiles. Considerable research has been done on biodiesel from vegetable oil of palm, soybean, sunflower, coconut, rapeseed and cottonseed as diesel fuel. However, these products are usually used as food, thus there is a problem between fuel energy demand and the food supply. Alternative feedstock has been being investigated, one of them is oil from Kenaf seed which was found to be similar to that of Cotton seed oil. Therefore, its potential as a source of oil for Biodiesel production were explored in this study. Moreover, various extraction methods such as Soxhlet extraction, Sonification extraction and Supercritical extraction were studied to extract oil from kenaf seeds. However, the drawbacks of conventional methods are long process time, large energy consumption, solvent volume and with large waste generation. Thus, to overcome the disadvantages of the conventional methods, Microwave-assisted solvent extraction was studied. Factorial design and response surface methodology (RSM) with Central Composite Design (CCD) were used to optimize the microwave-assisted solvent extraction (MASE) of oil from kenaf (Hibiscus cannabinus L.) seeds in this study. The optimum operation conditions were finally obtained using ANOVA. A 23 fractional design was initially employed and it was found that solid/solvent ratio, temperature, time and interaction between time and temperature had an effect on extraction yield of kenaf seed oil. Results show that the maximum oil obtained (16.5288%) was at the conditions: solid/solvent ratio of 1:10, 59°C and 19 minutes. The physicochemical properties and fatty acid composition of the kenaf seed oil obtained are determined to test its potential for biodiesel production.