Optimization of microwave-assisted solvent extraction of oil from kenaf seed
Biodiesel, an alternative diesel fuel, has become more attractive recently because it has a lot of environmental benefits. It is made from renewable biological sources such as vegetable oils and animal fats. Furthermore, it is biodegradable, nontoxic and has low emission profiles. Considerable resea...
Saved in:
Main Author: | |
---|---|
Format: | text |
Language: | English |
Published: |
Animo Repository
2009
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/etd_masteral/3810 https://animorepository.dlsu.edu.ph/context/etd_masteral/article/10648/viewcontent/CDTG004661_P.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
Language: | English |
id |
oai:animorepository.dlsu.edu.ph:etd_masteral-10648 |
---|---|
record_format |
eprints |
spelling |
oai:animorepository.dlsu.edu.ph:etd_masteral-106482024-01-30T09:55:07Z Optimization of microwave-assisted solvent extraction of oil from kenaf seed Nguyen, Pham Huyen Huong Biodiesel, an alternative diesel fuel, has become more attractive recently because it has a lot of environmental benefits. It is made from renewable biological sources such as vegetable oils and animal fats. Furthermore, it is biodegradable, nontoxic and has low emission profiles. Considerable research has been done on biodiesel from vegetable oil of palm, soybean, sunflower, coconut, rapeseed and cottonseed as diesel fuel. However, these products are usually used as food, thus there is a problem between fuel energy demand and the food supply. Alternative feedstock has been being investigated, one of them is oil from Kenaf seed which was found to be similar to that of Cotton seed oil. Therefore, its potential as a source of oil for Biodiesel production were explored in this study. Moreover, various extraction methods such as Soxhlet extraction, Sonification extraction and Supercritical extraction were studied to extract oil from kenaf seeds. However, the drawbacks of conventional methods are long process time, large energy consumption, solvent volume and with large waste generation. Thus, to overcome the disadvantages of the conventional methods, Microwave-assisted solvent extraction was studied. Factorial design and response surface methodology (RSM) with Central Composite Design (CCD) were used to optimize the microwave-assisted solvent extraction (MASE) of oil from kenaf (Hibiscus cannabinus L.) seeds in this study. The optimum operation conditions were finally obtained using ANOVA. A 23 fractional design was initially employed and it was found that solid/solvent ratio, temperature, time and interaction between time and temperature had an effect on extraction yield of kenaf seed oil. Results show that the maximum oil obtained (16.5288%) was at the conditions: solid/solvent ratio of 1:10, 59°C and 19 minutes. The physicochemical properties and fatty acid composition of the kenaf seed oil obtained are determined to test its potential for biodiesel production. 2009-01-01T08:00:00Z text application/pdf https://animorepository.dlsu.edu.ph/etd_masteral/3810 https://animorepository.dlsu.edu.ph/context/etd_masteral/article/10648/viewcontent/CDTG004661_P.pdf Master's Theses English Animo Repository Kenaf Biodiesel fuels Solvent extraction Chemical Engineering |
institution |
De La Salle University |
building |
De La Salle University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
De La Salle University Library |
collection |
DLSU Institutional Repository |
language |
English |
topic |
Kenaf Biodiesel fuels Solvent extraction Chemical Engineering |
spellingShingle |
Kenaf Biodiesel fuels Solvent extraction Chemical Engineering Nguyen, Pham Huyen Huong Optimization of microwave-assisted solvent extraction of oil from kenaf seed |
description |
Biodiesel, an alternative diesel fuel, has become more attractive recently because it has a lot of environmental benefits. It is made from renewable biological sources such as vegetable oils and animal fats. Furthermore, it is biodegradable, nontoxic and has low emission profiles. Considerable research has been done on biodiesel from vegetable oil of palm, soybean, sunflower, coconut, rapeseed and cottonseed as diesel fuel. However, these products are usually used as food, thus there is a problem between fuel energy demand and the food supply. Alternative feedstock has been being investigated, one of them is oil from Kenaf seed which was found to be similar to that of Cotton seed oil. Therefore, its potential as a source of oil for Biodiesel production were explored in this study. Moreover, various extraction methods such as Soxhlet extraction, Sonification extraction and Supercritical extraction were studied to extract oil from kenaf seeds. However, the drawbacks of conventional methods are long process time, large energy consumption, solvent volume and with large waste generation. Thus, to overcome the disadvantages of the conventional methods, Microwave-assisted solvent extraction was studied. Factorial design and response surface methodology (RSM) with Central Composite Design (CCD) were used to optimize the microwave-assisted solvent extraction (MASE) of oil from kenaf (Hibiscus cannabinus L.) seeds in this study. The optimum operation conditions were finally obtained using ANOVA. A 23 fractional design was initially employed and it was found that solid/solvent ratio, temperature, time and interaction between time and temperature had an effect on extraction yield of kenaf seed oil. Results show that the maximum oil obtained (16.5288%) was at the conditions: solid/solvent ratio of 1:10, 59°C and 19 minutes. The physicochemical properties and fatty acid composition of the kenaf seed oil obtained are determined to test its potential for biodiesel production. |
format |
text |
author |
Nguyen, Pham Huyen Huong |
author_facet |
Nguyen, Pham Huyen Huong |
author_sort |
Nguyen, Pham Huyen Huong |
title |
Optimization of microwave-assisted solvent extraction of oil from kenaf seed |
title_short |
Optimization of microwave-assisted solvent extraction of oil from kenaf seed |
title_full |
Optimization of microwave-assisted solvent extraction of oil from kenaf seed |
title_fullStr |
Optimization of microwave-assisted solvent extraction of oil from kenaf seed |
title_full_unstemmed |
Optimization of microwave-assisted solvent extraction of oil from kenaf seed |
title_sort |
optimization of microwave-assisted solvent extraction of oil from kenaf seed |
publisher |
Animo Repository |
publishDate |
2009 |
url |
https://animorepository.dlsu.edu.ph/etd_masteral/3810 https://animorepository.dlsu.edu.ph/context/etd_masteral/article/10648/viewcontent/CDTG004661_P.pdf |
_version_ |
1789971895067607040 |