Evolving hybrid neural networks with swarm intelligence for forecasting ASEAN inflation
Macroeconomic policy depends greatly on forecasting. Artificial neural networks (ANNs) such as multilayer perceptron's (MLPs) and recurrent neural networks (RNNs) can learn the nonlinearities of time series, making them strong candidates for improving economic forecasting. We forecast inflation...
Saved in:
主要作者: | Cabanilla, Kurt Izak M. |
---|---|
格式: | text |
語言: | English |
出版: |
Animo Repository
2018
|
主題: | |
在線閱讀: | https://animorepository.dlsu.edu.ph/etd_masteral/5515 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | De La Salle University |
語言: | English |
相似書籍
-
Peak load forecasting using a fuzzy neural network
由: Dash, P.K., et al.
出版: (2014) -
Practical implementation of a hybrid fuzzy neural network for one-day-ahead load forecasting
由: Srinivasan, D., et al.
出版: (2014) -
A neural network short-term load forecaster
由: Srinivasan, D., et al.
出版: (2014) -
Evolving artificial neural networks for short term load forecasting
由: Srinivasan, D.
出版: (2014) -
Hybrid neural-evolutionary model for electricity price forecasting
由: Srinivasan, D., et al.
出版: (2014)