Tracking system for a soccer robot game using neural network
The conventional tracking algorithm lacks the capability to learn. Approaches like the use of neural network, which has learning capability, may be incorporated to the tracking algorithm to take advantage of previously estimated pose. Neural network approach may be investigated in terms of speed and...
Saved in:
Main Author: | |
---|---|
Format: | text |
Language: | English |
Published: |
Animo Repository
2001
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/etd_masteral/2625 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
Language: | English |
id |
oai:animorepository.dlsu.edu.ph:etd_masteral-9463 |
---|---|
record_format |
eprints |
spelling |
oai:animorepository.dlsu.edu.ph:etd_masteral-94632021-01-29T07:02:09Z Tracking system for a soccer robot game using neural network Pantola, Alexis V. The conventional tracking algorithm lacks the capability to learn. Approaches like the use of neural network, which has learning capability, may be incorporated to the tracking algorithm to take advantage of previously estimated pose. Neural network approach may be investigated in terms of speed and accuracy by comparing it with the conventional tracking algorithm. This research develops a pose estimation algorithm using neural network as its paradigm. Pose estimation is concerned with finding an object's position and orientation. There are several approaches in handling pose estimation, and one of them is through the use of neural network. Neural network, with its learning capability, can take advantage of previously estimated pose and use this for future estimation. The pose estimation algorithm will be tested in the game of soccer robots, specifically the Micro-Robot World Cup Soccer Tournament (MiroSot). 2001-01-01T08:00:00Z text https://animorepository.dlsu.edu.ph/etd_masteral/2625 Master's Theses English Animo Repository Neural networks (Computer science) Robotics Games Soccer Computer vision Robot vision Micro League Football (Game) Computer Sciences |
institution |
De La Salle University |
building |
De La Salle University Library |
continent |
Asia |
country |
Philippines Philippines |
content_provider |
De La Salle University Library |
collection |
DLSU Institutional Repository |
language |
English |
topic |
Neural networks (Computer science) Robotics Games Soccer Computer vision Robot vision Micro League Football (Game) Computer Sciences |
spellingShingle |
Neural networks (Computer science) Robotics Games Soccer Computer vision Robot vision Micro League Football (Game) Computer Sciences Pantola, Alexis V. Tracking system for a soccer robot game using neural network |
description |
The conventional tracking algorithm lacks the capability to learn. Approaches like the use of neural network, which has learning capability, may be incorporated to the tracking algorithm to take advantage of previously estimated pose. Neural network approach may be investigated in terms of speed and accuracy by comparing it with the conventional tracking algorithm. This research develops a pose estimation algorithm using neural network as its paradigm. Pose estimation is concerned with finding an object's position and orientation. There are several approaches in handling pose estimation, and one of them is through the use of neural network. Neural network, with its learning capability, can take advantage of previously estimated pose and use this for future estimation. The pose estimation algorithm will be tested in the game of soccer robots, specifically the Micro-Robot World Cup Soccer Tournament (MiroSot). |
format |
text |
author |
Pantola, Alexis V. |
author_facet |
Pantola, Alexis V. |
author_sort |
Pantola, Alexis V. |
title |
Tracking system for a soccer robot game using neural network |
title_short |
Tracking system for a soccer robot game using neural network |
title_full |
Tracking system for a soccer robot game using neural network |
title_fullStr |
Tracking system for a soccer robot game using neural network |
title_full_unstemmed |
Tracking system for a soccer robot game using neural network |
title_sort |
tracking system for a soccer robot game using neural network |
publisher |
Animo Repository |
publishDate |
2001 |
url |
https://animorepository.dlsu.edu.ph/etd_masteral/2625 |
_version_ |
1712575074533376000 |