Exploring the use of pre-trained transformer-based models and semi-supervised learning to build training sets for text classification
Data annotation is the process of labeling text, images, or other types of content for machine learning tasks. With the rise in popularity of machine learning for classification tasks, large amounts of labeled data is typically desired to train effective models using different algorithms and archite...
Saved in:
主要作者: | Te, Gian Marco I. |
---|---|
格式: | text |
語言: | English |
出版: |
Animo Repository
2022
|
主題: | |
在線閱讀: | https://animorepository.dlsu.edu.ph/etdm_softtech/6 https://animorepository.dlsu.edu.ph/cgi/viewcontent.cgi?article=1005&context=etdm_softtech |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | De La Salle University |
語言: | English |
相似書籍
-
Learning to self-train for semi-supervised few-shot classification
由: LI, Xinzhe, et al.
出版: (2019) -
End-to-end open-set semi-supervised node classification with out-of-distribution detection
由: HUANG, Tiancheng, et al.
出版: (2022) -
Synthesis of annotated images as dataset for vehicle counting neural networks using semi-supervised learning
由: Chan, Patrick Matthew J.
出版: (2022) -
Semi-supervised text classification using partitioned EM
由: Cong, G., et al.
出版: (2013) -
Multiview semi-supervised learning with consensus
由: LI, Guangxia, et al.
出版: (2012)