Vehicle detection and tracking using corner feature points and artificial neural networks for a vision-based contactless apprehension system
Blocked intersections have been a contributing factor in the city-wide traffic congestion, especially in metropolitan cities. This research study aims to develop a better traffic violations management system in city-road intersections by using a machine vision system that automatically identifies an...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | text |
Published: |
Animo Repository
2018
|
Subjects: | |
Online Access: | https://animorepository.dlsu.edu.ph/faculty_research/1931 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | De La Salle University |
Summary: | Blocked intersections have been a contributing factor in the city-wide traffic congestion, especially in metropolitan cities. This research study aims to develop a better traffic violations management system in city-road intersections by using a machine vision system that automatically identifies and tags traffic violations committed in an intersection. The proposed system have three main sub-systems which are the video capture, video analysis, and output sub-systems. This study presents the development and results of a vehicle detection and tracking system using corner feature point detection and artificial neural networks for the vision-based contactless traffic violations apprehension system. This detection and tracking system serves as the front-end processing in the video analysis sub-system. Experiments were conducted for different corner feature-points detection algorithm: Harris, Shi-Tomasi, and Features from Accelerated Segment Test (FAST). The results showed that in the testing phase Harris-ANN have 89.09% accuracy, Shi-Tomasi-ANN have 88.48%, and FAST-ANN have 90.30% accuracy. © 2017 IEEE. |
---|