Troika Generative Adversarial Network (T-GAN): A Synthetic Image Generator That Improves Neural Network Training for Handwriting Classification
Training an artificial neural network for handwriting classification requires a sufficiently sized annotated dataset in order to avoid overfitting. In the absence of sufficient instances, data augmentation techniques are normally considered. In this paper, we propose the troika generative adversaria...
محفوظ في:
المؤلفون الرئيسيون: | Milan, Joe Anthony M, Fernandez, Proceso L, Jr |
---|---|
التنسيق: | text |
منشور في: |
Archīum Ateneo
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://archium.ateneo.edu/discs-faculty-pubs/208 https://archium.ateneo.edu/cgi/viewcontent.cgi?article=1207&context=discs-faculty-pubs |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Troika Generative Adversarial Network (T-GAN): A Synthetic Image Generator That Improves Neural Network Training for Handwriting Classification
بواسطة: Milan, Joe Anthony M, وآخرون
منشور في: (2020) -
Troika GAN vs Decoupled GAN: An Investigation on the Impact of Subnetwork Weight Sharing for Data Augmentation
بواسطة: Milan, Joe Anthony M, وآخرون
منشور في: (2020) -
Augmenting image data using generative adversarial networks (GAN)
بواسطة: Liu, Xinchi
منشور في: (2024) -
Be a cartoonist : editing anime images using generative adversarial network
بواسطة: Koh, Tong Liang
منشور في: (2022) -
Multi-stage generative adversarial networks for generating pavement crack images
بواسطة: Han, Chengjia, وآخرون
منشور في: (2024)