Troika Generative Adversarial Network (T-GAN): A Synthetic Image Generator That Improves Neural Network Training for Handwriting Classification
Training an artificial neural network for handwriting classification requires a sufficiently sized annotated dataset in order to avoid overfitting. In the absence of sufficient instances, data augmentation techniques are normally considered. In this paper, we propose the troika generative adversaria...
محفوظ في:
المؤلفون الرئيسيون: | Milan, Joe Anthony M, Fernandez, Proceso L, Jr |
---|---|
التنسيق: | text |
منشور في: |
Archīum Ateneo
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://archium.ateneo.edu/discs-faculty-pubs/234 https://archium.ateneo.edu/cgi/viewcontent.cgi?article=1230&context=discs-faculty-pubs |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Ateneo De Manila University |
مواد مشابهة
-
Troika Generative Adversarial Network (T-GAN): A Synthetic Image Generator That Improves Neural Network Training for Handwriting Classification
بواسطة: Milan, Joe Anthony M, وآخرون
منشور في: (2020) -
Towards imbalanced image classification : a generative adversarial network ensemble learning method
بواسطة: Huang, Yangru, وآخرون
منشور في: (2020) -
Troika GAN vs Decoupled GAN: An Investigation on the Impact of Subnetwork Weight Sharing for Data Augmentation
بواسطة: Milan, Joe Anthony M, وآخرون
منشور في: (2020) -
Augmenting image data using generative adversarial networks (GAN)
بواسطة: Liu, Xinchi
منشور في: (2024) -
Be a cartoonist : editing anime images using generative adversarial network
بواسطة: Koh, Tong Liang
منشور في: (2022)