Short-term stochastic load forecasting using autoregressive integrated moving average models and Hidden Markov Model
Load forecasting, particularly short-term load forecasting (STLF) plays a vital role in the economy streaming and tracking of power system. Many stochastic and artificial intelligence techniques haven been used in order to come up with an accurate (less error) short-term load forecast. Here, we intr...
محفوظ في:
المؤلفون الرئيسيون: | , , |
---|---|
التنسيق: | text |
منشور في: |
Archīum Ateneo
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://archium.ateneo.edu/ecce-faculty-pubs/27 https://ieeexplore.ieee.org/document/8320177 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Ateneo De Manila University |
الملخص: | Load forecasting, particularly short-term load forecasting (STLF) plays a vital role in the economy streaming and tracking of power system. Many stochastic and artificial intelligence techniques haven been used in order to come up with an accurate (less error) short-term load forecast. Here, we introduce a new approach to short-term load forecasting (STLF) using the conventional Hidden Markov Model (HMM) then compare it with Autoregressive Integrated Moving Average (ARIMA) models. Three-dimensional continuous multivariate Gaussian emission probabilities are used in this experiment for HMM. Meanwhile for ARIMA models, different parameters are used for different kinds of dataset. Comparison is done afterwards to the actual load value using MAPE and RMSE. |
---|