Global assessment of retinal arteriolar, venular and capillary microcirculations using fundus photographs and optical coherence tomography angiography in diabetic retinopathy

Retinal arterioles, venules and capillaries are differentially affected in diabetes, and studying vascular alterations may provide information on pathogenesis of diabetic retinopathy (DR). We conducted a cross-sectional study on 49 diabetic patients, who underwent fundus photography and optical cohe...

Full description

Saved in:
Bibliographic Details
Main Authors: Tan, Tien-En, Nguyen, Quang, Chua, Jacqueline, Schmetterer, Leopold, Tan, Gavin Siew Wei, Wong, Chee Wai, Tsai, Andrew, Cheung, Gemmy Chui Ming, Wong, Tien Yin, Ting, Daniel Shu Wei
Other Authors: Lee Kong Chian School of Medicine (LKCMedicine)
Format: Article
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/100062
http://hdl.handle.net/10220/49950
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Retinal arterioles, venules and capillaries are differentially affected in diabetes, and studying vascular alterations may provide information on pathogenesis of diabetic retinopathy (DR). We conducted a cross-sectional study on 49 diabetic patients, who underwent fundus photography and optical coherence tomographic angiography (OCT-A). Fundus photographs were analysed using semi-automated software for arteriolar and venular parameters, including central retinal arteriolar equivalent (CRAE), central retinal venular equivalent (CRVE) and fractal dimension (FD). Capillary parameters were measured using OCT-A, including capillary density index (CDI) and capillary FD of superficial (SVP) and deep (DVP) vascular plexuses. Severe DR was defined as severe non-proliferative DR and proliferative DR. We found that eyes with severe DR had narrower CRAE and sparser SVP CDI than eyes without. In logistic regression analysis, capillary parameters were more associated with severe DR than arteriolar or venular parameters. However, combining arteriolar, venular and capillary parameters provided the strongest association with severe DR. In linear regression analysis, eyes with poorer visual acuity had lower CRAE and FD of arterioles, venules, and DVP capillaries. We concluded that the retinal microvasculature is globally affected in severe DR, reflecting widespread microvascular impairment in perfusion. Arteriolar, venular and capillary parameters provide complementary information in assessment of DR.