Combining adaptive hierarchical depth motion maps with skeletal joints for human action recognition
This paper presents a new framework for human action recognition by fusing human motion with skeletal joints. First, adaptive hierarchical depth motion maps (AH-DMMs) are proposed to capture the shape and motion cues of action sequences. Specifically, AH-DMMs are calculated over adaptive hierarchica...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/100166 http://hdl.handle.net/10220/48566 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | This paper presents a new framework for human action recognition by fusing human motion with skeletal joints. First, adaptive hierarchical depth motion maps (AH-DMMs) are proposed to capture the shape and motion cues of action sequences. Specifically, AH-DMMs are calculated over adaptive hierarchical windows and Gabor filters are used to encode the texture information of AH-DMMs. Then, spatial distances of skeletal joint positions are computed to characterize the structure information of the human body. Finally, two types of fusion methods including feature-level fusion and decision-level fusion are employed to combine the motion cues and structure information. The experimental results on public benchmark datasets, i.e., MSRAction3D and UTKinect-Action, show the effectiveness of the proposed method. |
---|