Combining adaptive hierarchical depth motion maps with skeletal joints for human action recognition
This paper presents a new framework for human action recognition by fusing human motion with skeletal joints. First, adaptive hierarchical depth motion maps (AH-DMMs) are proposed to capture the shape and motion cues of action sequences. Specifically, AH-DMMs are calculated over adaptive hierarchica...
Saved in:
Main Authors: | Ding, Runwei, He, Qinqin, Liu, Hong, Liu, Mengyuan |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2019
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/100166 http://hdl.handle.net/10220/48566 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Multimodal multipart learning for action recognition in depth videos
由: Shahroudy, Amir, et al.
出版: (2018) -
A compact representation of human actions by sliding coordinate coding
由: Ding, Runwei, et al.
出版: (2018) -
Multilevel depth and image fusion for human activity detection
由: Ni, B., et al.
出版: (2014) -
Learning to share latent tasks for action recognition
由: Zhou, Q., et al.
出版: (2014) -
A compact representation of human actions by sliding coordinate coding
由: DING, Runwei, et al.
出版: (2017)