A novel memristor-based rSRAM structure for multiple-bit upsets immunity

A radiation hardened resistive SRAM structure (rSRAM) is proposed for the SRAM-based FPGAs in this paper. The rSRAM extends the conventional 6T SRAM structure by connecting memristors between the information nodes and drains of the transistors which compose cross-coupled invertors. With memristors c...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Liyun, Zhang, Chun, Chen, Liguang, Lai, Jinmei, Tong, Jiarong
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/100285
http://hdl.handle.net/10220/16508
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:A radiation hardened resistive SRAM structure (rSRAM) is proposed for the SRAM-based FPGAs in this paper. The rSRAM extends the conventional 6T SRAM structure by connecting memristors between the information nodes and drains of the transistors which compose cross-coupled invertors. With memristors connected to drains of OFF transistors configured to high resistance state while others configured to low resistance state forming stable voltage dividing path, the rSRAM structure is immune to both multiple-node upsets and multiple-bit upsets (MBUs). The simulation result demonstrates that rSRAM cell can tolerate simultaneous disruptions affecting all sensitive nodes with an LET (Liner Energy Transfer) of 100Mev-cm2/mg.