Thermoacoustic resonance effect and circuit modelling of biological tissue
In this letter, thermoacoustic resonance effect is predicted from theoretical analysis with series resistor-inductor-capacitor resonance circuit model and then observed experimentally using muscle tissue illuminated by multi-pulse microwave source. Through model fitting, the circuit parameters are e...
محفوظ في:
المؤلفون الرئيسيون: | , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2013
|
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/100405 http://hdl.handle.net/10220/10992 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | In this letter, thermoacoustic resonance effect is predicted from theoretical analysis with series resistor-inductor-capacitor resonance circuit model and then observed experimentally using muscle tissue illuminated by multi-pulse microwave source. Through model fitting, the circuit parameters are extracted to characterize quantitatively the resonant response of the tissue. Coherent demodulation is applied to obtain the enhanced signal-to-noise ratio and spatial information by treating tissue as a communication channel. This physical phenomenon shows significantly higher sensitivity than conventional single microwave pulse induced thermoacoustic effect, enabling the potential design of low-power thermoacoustic imaging device for portable and on-site diagnosis. |
---|