Electrochemical biosensor based on graphene oxide–Au nanoclusters composites for l-cysteine analysis

In this paper, a linker-free connected graphene oxide/Au nanocluster (GO–Au NCs) composite was prepared under sonication through electrostatic interactions, and characterized by transmission electron microscope (TEM), atomic force microscope (AFM), ultraviolet–visible (UV–vis) and FT-IR spectrum. Th...

Full description

Saved in:
Bibliographic Details
Main Authors: Ge, Shenguang, Yan, Mei, Lu, Juanjuan, Zhang, Meng, Yu, Feng, Yu, Jinghua, Song, Xianrang, Yu, Shilin
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2013
Online Access:https://hdl.handle.net/10356/100629
http://hdl.handle.net/10220/11043
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this paper, a linker-free connected graphene oxide/Au nanocluster (GO–Au NCs) composite was prepared under sonication through electrostatic interactions, and characterized by transmission electron microscope (TEM), atomic force microscope (AFM), ultraviolet–visible (UV–vis) and FT-IR spectrum. The morphological and structural characterizations evidence that the Au NCs can be efficiently decorated on the GO. The electrochemical investigations indicated that GO–Au NCs composite has an important role in the electrocatalytic activity towards the oxidation of l-cysteine (CySH). The GO–Au NCs composite modified electrode shows a large determination range from 0.05 to 20.0 μmol/L, a remarkably low detection limit is 0.02 μmol/L and low oxidation potential (+0.387). It was found that metal ions, carbohydrates, nucleotide acids and amino acids had no distinct effect on the determination of l-cysteine. In addition, the sensor has some important advantages such as simple preparation, fast response, good stability and high reproducibility. The direct determination of free reduced and total CySH in human urine samples has been successfully carried out without the assistance of any separation techniques.