4-aminobenzylphosphonic acid-modified glassy carbon electrode for electrochemically sensing paracetamol
4-Aminobenzylphosphonic acid (4-ABPA) was covalently immobilized on a glassy carbon electrode (GCE) surface via an electrochemical oxidation process. The bare and 4-ABPA-modified GCEs were employed to sense paracetamol (PCT) in a series of buffer solutions with different pH values at 36.8 C for comp...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2014
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/100864 http://hdl.handle.net/10220/18925 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | 4-Aminobenzylphosphonic acid (4-ABPA) was covalently immobilized on a glassy carbon electrode (GCE) surface via an electrochemical oxidation process. The bare and 4-ABPA-modified GCEs were employed to sense paracetamol (PCT) in a series of buffer solutions with different pH values at 36.8 C for comparison. The results showed that the 4-ABPA-modified GCE was more stable with higher electrochemical sensitivity toward PCT than the unmodified one. Moreover, the 4-ABPA-modified GCE can be used to monitor in-vitro dissolution process of PCT-loaded electrospun poly(vinyl alcohol) (PVA) nanofiber systems in real time. |
---|