SEMSim : a distributed architecture for multi-scale traffic simulation

With the fast urbanization of our modern society, transportation systems in cities are facing increasing problems such as congestion, collisions, and high levels of emissions. Researchers have been searching for solutions by investigating better urban planning and transportation policies, introducin...

全面介紹

Saved in:
書目詳細資料
Main Authors: Xu, Yadong, Aydt, Heiko, Lees, Michael
其他作者: School of Computer Engineering
格式: Conference or Workshop Item
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/100971
http://hdl.handle.net/10220/16759
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:With the fast urbanization of our modern society, transportation systems in cities are facing increasing problems such as congestion, collisions, and high levels of emissions. Researchers have been searching for solutions by investigating better urban planning and transportation policies, introducing new technologies such as Intelligent Transportation System (ITS), or introducing more environmentally friendly vehicles such as electric vehicles (EVs). Traffic modeling and simulation is one tool adopted by researchers for more than half a century [1] to help authorities assess new infrastructure design, and new policies without impacting real traffic. City-scale nanoscopic traffic simulation is a challenging problem that requires parallelization and distribution. In this paper, we have given an overview of the architecture for our nanoscopic traffic simulator SEMSim. For efficient parallel simulation, reducing the dependencies between the various LPs is crucial. We have specified a multi-objective optimization problem concerned with the allocation of agents to clusters. In our future work, we will implement a nanoscopic traffic simulation and devise methods to solve this problem dynamically. Given the difficulty of the problem, these methods will have to make use of domain-specific knowledge, such as information about the topology of the road network.