Detecting imprudence of 'reliable' sellers in online auction sites

Reputation systems deployed in popular online auction sites simply aggregate feedback about a seller's past transactions. By studying a real auction site dataset, we infer that a non-negligible fraction of unsatisfactory transactions involve sellers with high reputation. Such a phenomenon can b...

全面介紹

Saved in:
書目詳細資料
Main Authors: Liu, Xin, Datta, Anwitaman, Fang, Hui, Zhang, Jie
其他作者: School of Computer Engineering
格式: Conference or Workshop Item
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/101077
http://hdl.handle.net/10220/16771
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Reputation systems deployed in popular online auction sites simply aggregate feedback about a seller's past transactions. By studying a real auction site dataset, we infer that a non-negligible fraction of unsatisfactory transactions involve sellers with high reputation. Such a phenomenon can be interpreted by motivation theory from behaviorial science: A seller with high reputation has more business opportunities. Bad feedback for latest transactions do not immediately affect his reputation adequately to hurt business, hence he may not be as prudent as before. In this work, we propose the concept of imprudence to study and detect the inappropriate behavior of a 'reliable' seller (i.e., the one with high reputation computed using conventional approaches). Specifically, we first identify and verify the features that influence a seller's imprudence behavior. We then design a novel intelligent buying agent to combine these factors using logistic regression for predicting and studying the probability of imprudence of a target seller. We validate our approach using real datasets driven experiments.