Wave field synthesis: The future of spatial audio
We all are used to perceiving sound in a three-dimensional (3-D) world. In order to reproduce real-world sound in an enclosed room or theater, extensive study on how spatial sound can be created has been an active research topic for decades. Spatial audio is an illusion of creating sound objects tha...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/101193 http://hdl.handle.net/10220/16744 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We all are used to perceiving sound in a three-dimensional (3-D) world. In order to reproduce real-world sound in an enclosed room or theater, extensive study on how spatial sound can be created has been an active research topic for decades. Spatial audio is an illusion of creating sound objects that can be spatially positioned in a 3-D space by passing original sound tracks through a sound-rendering system and reproduced through multiple transducers, which are distributed around the listening space. The reproduced sound field aims to achieve a perception of spaciousness and sense of directivity of the sound objects. Ideally, such a sound reproduction system should give listeners a sense of an immersive 3-D sound experience. Spatial audio can primarily be divided into three types of sound reproduction techniques, namely, loudspeaker stereophony, binaural technology, and reconstruction using synthesis of the natural wave field [which includes Ambisonics and wave field synthesis (WFS)], as shown in Fig. 1(a). |
---|