Excitonic bandgap dependence on stacking configuration in four layer graphene
Different crystallographic stacking configurations in graphene provide an additional degree of freedom in the electronic structure. We have conducted systematic investigations of the transport properties of ABAB- and ABCA-stacked four-layer graphene. Our results reveal that ABAB and ABCA graphene ex...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/101290 http://hdl.handle.net/10220/18386 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Different crystallographic stacking configurations in graphene provide an additional degree of freedom in the electronic structure. We have conducted systematic investigations of the transport properties of ABAB- and ABCA-stacked four-layer graphene. Our results reveal that ABAB and ABCA graphene exhibit markedly different properties as functions of both temperature and magnetic field. The temperature-dependant resistance measurement reveals that the excitonic gap of ABCA stacked graphene increases as a function of temperature, while for ABAB, a shrinking excitonic gap configuration is observed. |
---|