Endoplasmic reticulum stress response in yeast and humans
Stress pathways monitor intracellular systems and deploy a range of regulatory mechanisms in response to stress. One of the best-characterized pathways, the unfolded protein response (UPR), is an intracellular signal transduction pathway that monitors endoplasmic reticulum (ER) homeostasis. Its acti...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/101381 http://hdl.handle.net/10220/19855 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Stress pathways monitor intracellular systems and deploy a range of regulatory mechanisms in response to stress. One of the best-characterized pathways, the unfolded protein response (UPR), is an intracellular signal transduction pathway that monitors endoplasmic reticulum (ER) homeostasis. Its activation is required to alleviate the effects of ER stress and is highly conserved from yeast to human. Although metazoans have three UPR outputs, yeast cells rely exclusively on the inositol-requiring enzyme-1 (Ire1) pathway, which is conserved in all Eukaryotes. In general, the UPR program activates hundreds of genes to alleviate ER stress but it can lead to apoptosis if the system fails to restore homeostasis. In this review, we summarize the major advances in understanding the response to ER stress in S. cerevisiae, S. pombe, and humans. The contribution of solved protein structures to a better understanding of the UPR pathway is discussed. Finally, we cover the interplay of ER stress in the development of diseases. |
---|