A survey of inverse reinforcement learning techniques

This purpose of this paper is to provide an overview of the theoretical background and applications of inverse reinforcement learning (IRL). Reinforcement learning (RL) techniques provide a powerful solution for sequential decision making problems under uncertainty. RL uses an agent equipped with a...

全面介紹

Saved in:
書目詳細資料
Main Authors: Shao, Zhifei, Er, Meng Joo
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/101589
http://hdl.handle.net/10220/16774
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:This purpose of this paper is to provide an overview of the theoretical background and applications of inverse reinforcement learning (IRL). Reinforcement learning (RL) techniques provide a powerful solution for sequential decision making problems under uncertainty. RL uses an agent equipped with a reward function to find a policy through interactions with a dynamic environment. However, one major assumption of existing RL algorithms is that reward function, the most succinct representation of the designer's intention, needs to be provided beforehand. In practice, the reward function can be very hard to specify and exhaustive to tune for large and complex problems, and this inspires the development of IRL, an extension of RL, which directly tackles this problem by learning the reward function through expert demonstrations. In this paper, the original IRL algorithms and its close variants, as well as their recent advances are reviewed and compared. This paper can serve as an introduction guide of fundamental theory and developments, as well as the applications of IRL. This paper surveys the theories and applications of IRL, which is the latest development of RL and has not been done so far.