A survey of inverse reinforcement learning techniques
This purpose of this paper is to provide an overview of the theoretical background and applications of inverse reinforcement learning (IRL). Reinforcement learning (RL) techniques provide a powerful solution for sequential decision making problems under uncertainty. RL uses an agent equipped with a...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/101589 http://hdl.handle.net/10220/16774 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-101589 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1015892020-03-07T14:00:33Z A survey of inverse reinforcement learning techniques Shao, Zhifei Er, Meng Joo School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering This purpose of this paper is to provide an overview of the theoretical background and applications of inverse reinforcement learning (IRL). Reinforcement learning (RL) techniques provide a powerful solution for sequential decision making problems under uncertainty. RL uses an agent equipped with a reward function to find a policy through interactions with a dynamic environment. However, one major assumption of existing RL algorithms is that reward function, the most succinct representation of the designer's intention, needs to be provided beforehand. In practice, the reward function can be very hard to specify and exhaustive to tune for large and complex problems, and this inspires the development of IRL, an extension of RL, which directly tackles this problem by learning the reward function through expert demonstrations. In this paper, the original IRL algorithms and its close variants, as well as their recent advances are reviewed and compared. This paper can serve as an introduction guide of fundamental theory and developments, as well as the applications of IRL. This paper surveys the theories and applications of IRL, which is the latest development of RL and has not been done so far. 2013-10-24T06:50:39Z 2019-12-06T20:40:56Z 2013-10-24T06:50:39Z 2019-12-06T20:40:56Z 2012 2012 Journal Article Shao, Z., & Er, M. J. (2012). A survey of inverse reinforcement learning techniques. International journal of intelligent computing and cybernetics, 5(3), 293-311. 1756-378X https://hdl.handle.net/10356/101589 http://hdl.handle.net/10220/16774 10.1108/17563781211255862 en International journal of intelligent computing and cybernetics |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering Shao, Zhifei Er, Meng Joo A survey of inverse reinforcement learning techniques |
description |
This purpose of this paper is to provide an overview of the theoretical background and applications of inverse reinforcement learning (IRL). Reinforcement learning (RL) techniques provide a powerful solution for sequential decision making problems under uncertainty. RL uses an agent equipped with a reward function to find a policy through interactions with a dynamic environment. However, one major assumption of existing RL algorithms is that reward function, the most succinct representation of the designer's intention, needs to be provided beforehand. In practice, the reward function can be very hard to specify and exhaustive to tune for large and complex problems, and this inspires the development of IRL, an extension of RL, which directly tackles this problem by learning the reward function through expert demonstrations. In this paper, the original IRL algorithms and its close variants, as well as their recent advances are reviewed and compared. This paper can serve as an introduction guide of fundamental theory and developments, as well as the applications of IRL. This paper surveys the theories and applications of IRL, which is the latest development of RL and has not been done so far. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Shao, Zhifei Er, Meng Joo |
format |
Article |
author |
Shao, Zhifei Er, Meng Joo |
author_sort |
Shao, Zhifei |
title |
A survey of inverse reinforcement learning techniques |
title_short |
A survey of inverse reinforcement learning techniques |
title_full |
A survey of inverse reinforcement learning techniques |
title_fullStr |
A survey of inverse reinforcement learning techniques |
title_full_unstemmed |
A survey of inverse reinforcement learning techniques |
title_sort |
survey of inverse reinforcement learning techniques |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/101589 http://hdl.handle.net/10220/16774 |
_version_ |
1681034505649913856 |