Non-Bayesian social learning with observation reuse and soft switching

We propose a non-Bayesian social learning update rule for agents in a network, which minimizes the sum of the Kullback-Leibler divergence between the true distribution generating the agents’ local observations and the agents’ beliefs (parameterized by a hypothesis set), and a weighted varentropy-rel...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Md. Zulfiquar Ali Bhotto, Tay, Wee Peng
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2019
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/102641
http://hdl.handle.net/10220/48151
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English