Non-Bayesian social learning with observation reuse and soft switching
We propose a non-Bayesian social learning update rule for agents in a network, which minimizes the sum of the Kullback-Leibler divergence between the true distribution generating the agents’ local observations and the agents’ beliefs (parameterized by a hypothesis set), and a weighted varentropy-rel...
Saved in:
Main Authors: | Md. Zulfiquar Ali Bhotto, Tay, Wee Peng |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2019
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/102641 http://hdl.handle.net/10220/48151 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Bayesian optimization with switching cost: Regret analysis and lookahead variants
由: LIU, Peng, et al.
出版: (2023) -
REPRESENTATION LEARNING WITH DOMAIN-SPECIFIC BAYESIAN PRIORS
由: LI, SHEN
出版: (2022) -
Reducing parameter value uncertainty in discrete Bayesian network learning: a semantic fuzzy Bayesian approach
由: Das, Monidipa, et al.
出版: (2022) -
Bayesian learning of concept ontology for automatic image annotation
由: SHI RUI
出版: (2010) -
Content popularity prediction based on quantized federated Bayesian learning in fog radio access networks
由: Tao, Yunwei, et al.
出版: (2023)