Generation of personalized ontology based on consumer emotion and behavior analysis
The relationships between consumer emotions and their buying behaviors have been well documented. Technology-savvy consumers often use the web to find information on products and services before they commit to buying. We propose a semantic web usage mining approach for discovering periodic web acces...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/102780 http://hdl.handle.net/10220/16447 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-102780 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1027802020-05-28T07:17:48Z Generation of personalized ontology based on consumer emotion and behavior analysis Tang, Jie. Hong, Guan Y. Fong, A. C. M. Zhou, Baoyao. Hui, Siu C. School of Computer Engineering DRNTU::Engineering::Computer science and engineering The relationships between consumer emotions and their buying behaviors have been well documented. Technology-savvy consumers often use the web to find information on products and services before they commit to buying. We propose a semantic web usage mining approach for discovering periodic web access patterns from annotated web usage logs which incorporates information on consumer emotions and behaviors through self-reporting and behavioral tracking. We use fuzzy logic to represent real-life temporal concepts (e.g., morning) and requested resource attributes (ontological domain concepts for the requested URLs) of periodic pattern-based web access activities. These fuzzy temporal and resource representations, which contain both behavioral and emotional cues, are incorporated into a Personal Web Usage Lattice that models the user's web access activities. From this, we generate a Personal Web Usage Ontology written in OWL, which enables semantic web applications such as personalized web resources recommendation. Finally, we demonstrate the effectiveness of our approach by presenting experimental results in the context of personalized web resources recommendation with varying degrees of emotional influence. Emotional influence has been found to contribute positively to adaptation in personalized recommendation. 2013-10-10T09:07:27Z 2019-12-06T21:00:09Z 2013-10-10T09:07:27Z 2019-12-06T21:00:09Z 2012 2012 Journal Article Fong, A. C. M., Zhou, B., Hui, S. C., Tang, J., & Hong, G. Y. (2012). Generation of personalized ontology based on consumer emotion and behavior analysis. IEEE transactions on affective computing, 3(2), 152-164. https://hdl.handle.net/10356/102780 http://hdl.handle.net/10220/16447 10.1109/T-AFFC.2011.22 en IEEE transactions on affective computing |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Computer science and engineering |
spellingShingle |
DRNTU::Engineering::Computer science and engineering Tang, Jie. Hong, Guan Y. Fong, A. C. M. Zhou, Baoyao. Hui, Siu C. Generation of personalized ontology based on consumer emotion and behavior analysis |
description |
The relationships between consumer emotions and their buying behaviors have been well documented. Technology-savvy consumers often use the web to find information on products and services before they commit to buying. We propose a semantic web usage mining approach for discovering periodic web access patterns from annotated web usage logs which incorporates information on consumer emotions and behaviors through self-reporting and behavioral tracking. We use fuzzy logic to represent real-life temporal concepts (e.g., morning) and requested resource attributes (ontological domain concepts for the requested URLs) of periodic pattern-based web access activities. These fuzzy temporal and resource representations, which contain both behavioral and emotional cues, are incorporated into a Personal Web Usage Lattice that models the user's web access activities. From this, we generate a Personal Web Usage Ontology written in OWL, which enables semantic web applications such as personalized web resources recommendation. Finally, we demonstrate the effectiveness of our approach by presenting experimental results in the context of personalized web resources recommendation with varying degrees of emotional influence. Emotional influence has been found to contribute positively to adaptation in personalized recommendation. |
author2 |
School of Computer Engineering |
author_facet |
School of Computer Engineering Tang, Jie. Hong, Guan Y. Fong, A. C. M. Zhou, Baoyao. Hui, Siu C. |
format |
Article |
author |
Tang, Jie. Hong, Guan Y. Fong, A. C. M. Zhou, Baoyao. Hui, Siu C. |
author_sort |
Tang, Jie. |
title |
Generation of personalized ontology based on consumer emotion and behavior analysis |
title_short |
Generation of personalized ontology based on consumer emotion and behavior analysis |
title_full |
Generation of personalized ontology based on consumer emotion and behavior analysis |
title_fullStr |
Generation of personalized ontology based on consumer emotion and behavior analysis |
title_full_unstemmed |
Generation of personalized ontology based on consumer emotion and behavior analysis |
title_sort |
generation of personalized ontology based on consumer emotion and behavior analysis |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/102780 http://hdl.handle.net/10220/16447 |
_version_ |
1681057993654796288 |