Bacteria-triggered release of antimicrobial agents
Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular bacteria...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/102956 http://hdl.handle.net/10220/19146 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-102956 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1029562020-03-07T12:47:11Z Bacteria-triggered release of antimicrobial agents Komnatnyy, Vitaly V. Chiang, Wen-Chi Tolker-Nielsen, Tim Givskov, Michael Nielsen, Thomas E. Singapore Centre for Environmental Life Sciences Engineering DRNTU::Engineering::Environmental engineering Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular bacterial lipases are particularly abundant at sites of infection. Herein it is shown how active or proactive compounds attached to polymeric surfaces using lipase-sensitive linkages, such as fatty acid esters or anhydrides, may be released in response to infection. Proof-of-concept of the responsive material is demonstrated by the bacteria-triggered release of antibiotics to control bacterial populations and signaling molecules to modulate quorum sensing. The self-regulating system provides the basis for the development of device-relevant polymeric materials, which only release antibiotics in dependency of the titer of bacteria surrounding the medical device. 2014-04-07T03:22:15Z 2019-12-06T21:02:43Z 2014-04-07T03:22:15Z 2019-12-06T21:02:43Z 2014 2014 Journal Article Komnatnyy, V. V., Chiang, W. C., Tolker-Nielsen, T., Givskov, M., & Nielsen, T. E. (2014). Bacteria-Triggered Release of Antimicrobial Agents. Angewandte Chemie International Edition, 53(2), 439-441. 1433-7851 https://hdl.handle.net/10356/102956 http://hdl.handle.net/10220/19146 10.1002/anie.201307975 en Angewandte chemie international edition © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Environmental engineering |
spellingShingle |
DRNTU::Engineering::Environmental engineering Komnatnyy, Vitaly V. Chiang, Wen-Chi Tolker-Nielsen, Tim Givskov, Michael Nielsen, Thomas E. Bacteria-triggered release of antimicrobial agents |
description |
Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular bacterial lipases are particularly abundant at sites of infection. Herein it is shown how active or proactive compounds attached to polymeric surfaces using lipase-sensitive linkages, such as fatty acid esters or anhydrides, may be released in response to infection. Proof-of-concept of the responsive material is demonstrated by the bacteria-triggered release of antibiotics to control bacterial populations and signaling molecules to modulate quorum sensing. The self-regulating system provides the basis for the development of device-relevant polymeric materials, which only release antibiotics in dependency of the titer of bacteria surrounding the medical device. |
author2 |
Singapore Centre for Environmental Life Sciences Engineering |
author_facet |
Singapore Centre for Environmental Life Sciences Engineering Komnatnyy, Vitaly V. Chiang, Wen-Chi Tolker-Nielsen, Tim Givskov, Michael Nielsen, Thomas E. |
format |
Article |
author |
Komnatnyy, Vitaly V. Chiang, Wen-Chi Tolker-Nielsen, Tim Givskov, Michael Nielsen, Thomas E. |
author_sort |
Komnatnyy, Vitaly V. |
title |
Bacteria-triggered release of antimicrobial agents |
title_short |
Bacteria-triggered release of antimicrobial agents |
title_full |
Bacteria-triggered release of antimicrobial agents |
title_fullStr |
Bacteria-triggered release of antimicrobial agents |
title_full_unstemmed |
Bacteria-triggered release of antimicrobial agents |
title_sort |
bacteria-triggered release of antimicrobial agents |
publishDate |
2014 |
url |
https://hdl.handle.net/10356/102956 http://hdl.handle.net/10220/19146 |
_version_ |
1681035596004327424 |