Electrospun nanofibers as a bioadhesive platform for capturing adherent leukemia cells

This study investigated the adhesive behaviors of normal and abnormal hematopoietic cells on nanotopographical materials. Previously, electrospun nanofiber scaffolds (NFSs) were used to capture and expand hematopoietic stem cells in vitro; here, we demonstrate that NFS could also serve as a useful b...

Full description

Saved in:
Bibliographic Details
Main Authors: Chan, Jerry Kok Yen, Cao, Xue, Kwek, Kenneth, Chan, Casey K. H., Lim, Mayasari
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/103015
http://hdl.handle.net/10220/19151
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This study investigated the adhesive behaviors of normal and abnormal hematopoietic cells on nanotopographical materials. Previously, electrospun nanofiber scaffolds (NFSs) were used to capture and expand hematopoietic stem cells in vitro; here, we demonstrate that NFS could also serve as a useful bioadhesive platform for capturing functionally adherent leukemia cells. Collagen-blended poly(d,l-lactide-co-glycolide) NFS enabled more rapid and efficient capture of K562 leukemia cells than tissue culture polystyrene surfaces with up to 70% improved adhesion and shorter time. Cellular extensions, stronger adhesion, and enhanced cell–cell interactions were observed in K562 cells captured on NFS. While NFS promoted hematopoietic progenitor cell proliferation, it inhibited leukemia cell proliferation and affected cell cycle status by shifting more cells toward the G0/G1 phase. The expression of α-integrins was equally high in both captured and uncaptured leukemia cell populations demonstrating no relation to its adhesive nature. Hematopoietic morphological signatures of NFS captured cells presented no impact on cell differentiation. We conclude that electrospun NFS serves as an excellent platform not only for capturing functionally adherent leukemia cells but also for studying the impact of niche-like structure in the nanoscale.