Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection

Despite significant advancements over the years, there remains an urgent need for low cost diagnostic approaches that allow for rapid, reliable and sensitive detection of malaria parasites in clinical samples. Our previous work has shown that magnetic resonance relaxometry (MRR) is a potentially hig...

全面介紹

Saved in:
書目詳細資料
Main Authors: Fook Kong, Tian, Ye, Weijian, Peng, Weng Kung, Hou, Han Wei, Marcos, Preiser, Peter Rainer, Nguyen, Nam-Trung, Han, Jongyoon
其他作者: Lee Kong Chian School of Medicine (LKCMedicine)
格式: Article
語言:English
出版: 2015
在線閱讀:https://hdl.handle.net/10356/103487
http://hdl.handle.net/10220/38750
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Despite significant advancements over the years, there remains an urgent need for low cost diagnostic approaches that allow for rapid, reliable and sensitive detection of malaria parasites in clinical samples. Our previous work has shown that magnetic resonance relaxometry (MRR) is a potentially highly sensitive tool for malaria diagnosis. A key challenge for making MRR based malaria diagnostics suitable for clinical testing is the fact that MRR baseline fluctuation exists between individuals, making it difficult to detect low level parasitemia. To overcome this problem, it is important to establish the MRR baseline of each individual while having the ability to reliably determine any changes that are caused by the infection of malaria parasite. Here we show that an approach that combines the use of microfluidic cell enrichment with a saponin lysis before MRR detection can overcome these challenges and provide the basis for a highly sensitive and reliable diagnostic approach of malaria parasites. Importantly, as little as 0.0005% of ring stage parasites can be detected reliably, making this ideally suited for the detection of malaria parasites in peripheral blood obtained from patients. The approaches used here are envisaged to provide a new malaria diagnosis solution in the near future.