Roles of linear and circular polarization properties and effect of wavelength choice on differentiation between ex vivo normal and cancerous gastric samples

Multispectral Mueller matrix imaging was performed over a spectral range from 470 to 632 nm on 4-μm unstained gastric tissue sections. A complete set of polarization parameters was derived. The combination of linear depolarization and linear retardance yields the highest accuracy in sample classific...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Wenfeng, Lim, Lee Guan, Srivastava, Supriya, Yan, Jimmy So Bok, Shabbir, Asim, Liu, Quan
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/104203
http://hdl.handle.net/10220/19543
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Multispectral Mueller matrix imaging was performed over a spectral range from 470 to 632 nm on 4-μm unstained gastric tissue sections. A complete set of polarization parameters was derived. The combination of linear depolarization and linear retardance yields the highest accuracy in sample classification. When the depolarization of linearly polarized light due to scattering is independent of the orientation angle of the incident linear polarization vector, the derivation of linear polarization properties will require only 3×3 Mueller matrix, which would significantly reduce the complexity of the polarimetry imaging system. When additional parameters are needed to complement the two linear polarization parameters, retardance, circular depolarization, and depolarization can be included in classification in the order of preference. However, these additional parameters would require the measurement of 4×4 Mueller matrix. In addition, it appears that wavelength is not a critical factor in terms of classification accuracy for thin tissue sections in this study.