A mathematical model for analyzing the elasticity, viscosity, and failure of soft tissue: comparison of native and decellularized porcine cardiac extracellular matrix for tissue engineering

The clinical success of tissue-engineered constructs commonly requires mechanical properties that closely mimic those of the human tissue. Determining the viscoelastic properties of such biomaterials and the factors governing their failure profiles, however, has proven challenging, although collecti...

Full description

Saved in:
Bibliographic Details
Main Authors: Bronshtein, Tomer, Au-Yeung, Gigi Chi Ting, Sarig, Udi, Nguyen, Evelyne Bao-Vi, Machluf, Marcelle, Mhaisalkar, Priyadarshini S., Boey, Freddy Yin Chiang, Venkatraman, Subbu S.
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/104383
http://hdl.handle.net/10220/17013
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The clinical success of tissue-engineered constructs commonly requires mechanical properties that closely mimic those of the human tissue. Determining the viscoelastic properties of such biomaterials and the factors governing their failure profiles, however, has proven challenging, although collecting extensive data regarding their tensile behavior is straightforward. The easily calculated Young's modulus remains the most reported mechanical measure, regardless of its limitations, even though single-relaxation-time (SRT) models can provide much more information, which remain scarce due to a lack of manageable tools for implementing these models. We developed an easy-to-use algorithm for applying the Zener SRT model and determining the elastic moduli, viscosity, and failure profiles of materials under different mechanical tests in a user-independent manner. The algorithm was validated on the data resulting from tensile tests on native and decellularized porcine cardiac tissue, previously suggested as a promising scaffold material for cardiac tissue engineering. This analysis yields new and more accurate measurements such as the elastic moduli and viscosity, the model's relaxation time, and information on the factors governing the materials' failure profiles. These measurements indicate that the viscoelasticity and strength of the decellularized acellular extracellular matrix (ECM) are similar to those of native tissue, although its elasticity and apparent viscosity are higher. Nonetheless, reseeding and culturing the ECM with mesenchymal stem cells was shown to partially restore the mechanical properties lost after decellularization. We propose this algorithm as a platform for soft-tissue analysis that can provide comparable and unbiased measures for characterizing viscoelastic biomaterials commonly used in tissue engineering.