Configurable three-dimensional boron nitride-carbon architecture and its tunable electronic behavior with stable thermal performances
Recent developments of 3D-graphene and 3D-boron-nitride have become of great interest owing to their potential for ultra-light flexible electronics. Here we demonstrate the first synthesis of novel 3D-BNC hybrids. By specifically controlling the compositions of C and BN, new fascinating properties a...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/105204 http://hdl.handle.net/10220/20478 http://dx.doi.org/10.1002/smll.201400292 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Recent developments of 3D-graphene and 3D-boron-nitride have become of great interest owing to their potential for ultra-light flexible electronics. Here we demonstrate the first synthesis of novel 3D-BNC hybrids. By specifically controlling the compositions of C and BN, new fascinating properties are observed, such as highly tunable electrical conductivity, controllable EMI shielding properties, and stable thermal conductivity. This ultra-light hybrid opens up many new applications such as for electronic packaging and thermal interface materials (TIMs). |
---|