Effect of time discretization of the imaging process on the accuracy of trajectory estimation in fluorescence microscopy
In fluorescence microscopy, high-speed imaging is often necessary for the proper visualization and analysis of fast subcellular dynamics. Here, we examine how the speed of image acquisition affects the accuracy with which parameters such as the starting position and speed of a microscopic non-statio...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/105352 http://hdl.handle.net/10220/20673 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-105352 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1053522022-02-16T16:26:24Z Effect of time discretization of the imaging process on the accuracy of trajectory estimation in fluorescence microscopy Lin, Zhiping Ober, Raimund J. Wong, Yau Chao, Jerry School of Electrical and Electronic Engineering DRNTU::Engineering::Materials In fluorescence microscopy, high-speed imaging is often necessary for the proper visualization and analysis of fast subcellular dynamics. Here, we examine how the speed of image acquisition affects the accuracy with which parameters such as the starting position and speed of a microscopic non-stationary fluorescent object can be estimated from the resulting image sequence. Specifically, we use a Fisher information-based performance bound to investigate the detector-dependent effect of frame rate on the accuracy of parameter estimation. We demonstrate that when a charge-coupled device detector is used, the estimation accuracy deteriorates as the frame rate increases beyond a point where the detector’s readout noise begins to overwhelm the low number of photons detected in each frame. In contrast, we show that when an electron-multiplying charge-coupled device (EMCCD) detector is used, the estimation accuracy improves with increasing frame rate. In fact, at high frame rates where the low number of photons detected in each frame renders the fluorescent object difficult to detect visually, imaging with an EMCCD detector represents a natural implementation of the Ultrahigh Accuracy Imaging Modality, and enables estimation with an accuracy approaching that which is attainable only when a hypothetical noiseless detector is used. Published version 2014-09-12T08:50:05Z 2019-12-06T21:49:46Z 2014-09-12T08:50:05Z 2019-12-06T21:49:46Z 2014 2014 Journal Article Wong, Y., Chao, J., Lin, Z., & Ober, R. J. (2014). Effect of time discretization of the imaging process on the accuracy of trajectory estimation in fluorescence microscopy. Optics Express, 22(17), 20396-20420. 1094-4087 https://hdl.handle.net/10356/105352 http://hdl.handle.net/10220/20673 10.1364/OE.22.020396 25321248 en Optics Express © 2014 Optical Society of America. This paper was published in Optics Express and is made available as an electronic reprint (preprint) with permission of Optical Society of America. The paper can be found at the following official DOI: http://dx.doi.org/10.1364/OE.22.020396. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Materials |
spellingShingle |
DRNTU::Engineering::Materials Lin, Zhiping Ober, Raimund J. Wong, Yau Chao, Jerry Effect of time discretization of the imaging process on the accuracy of trajectory estimation in fluorescence microscopy |
description |
In fluorescence microscopy, high-speed imaging is often necessary for the proper visualization and analysis of fast subcellular dynamics. Here, we examine how the speed of image acquisition affects the accuracy with which parameters such as the starting position and speed of a microscopic non-stationary fluorescent object can be estimated from the resulting image sequence. Specifically, we use a Fisher information-based performance bound to investigate the detector-dependent effect of frame rate on the accuracy of parameter estimation. We demonstrate that when a charge-coupled device detector is used, the estimation accuracy deteriorates as the frame rate increases beyond a point where the detector’s readout noise begins to overwhelm the low number of photons detected in each frame. In contrast, we show that when an electron-multiplying charge-coupled device (EMCCD) detector is used, the estimation accuracy improves with increasing frame rate. In fact, at high frame rates where the low number of photons detected in each frame renders the fluorescent object difficult to detect visually, imaging with an EMCCD detector represents a natural implementation of the Ultrahigh Accuracy Imaging Modality, and enables estimation with an accuracy approaching that which is attainable only when a hypothetical noiseless detector is used. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Lin, Zhiping Ober, Raimund J. Wong, Yau Chao, Jerry |
format |
Article |
author |
Lin, Zhiping Ober, Raimund J. Wong, Yau Chao, Jerry |
author_sort |
Lin, Zhiping |
title |
Effect of time discretization of the imaging process on the accuracy of trajectory estimation in fluorescence microscopy |
title_short |
Effect of time discretization of the imaging process on the accuracy of trajectory estimation in fluorescence microscopy |
title_full |
Effect of time discretization of the imaging process on the accuracy of trajectory estimation in fluorescence microscopy |
title_fullStr |
Effect of time discretization of the imaging process on the accuracy of trajectory estimation in fluorescence microscopy |
title_full_unstemmed |
Effect of time discretization of the imaging process on the accuracy of trajectory estimation in fluorescence microscopy |
title_sort |
effect of time discretization of the imaging process on the accuracy of trajectory estimation in fluorescence microscopy |
publishDate |
2014 |
url |
https://hdl.handle.net/10356/105352 http://hdl.handle.net/10220/20673 |
_version_ |
1725985623444029440 |