Regularized Spatial Filtering Method (R-SFM) for detection of Attention Deficit Hyperactivity Disorder (ADHD) from resting-state functional Magnetic Resonance Imaging (rs-fMRI)
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental problem in children. Resting state functional magnetic resonance imaging (rs-fMRI) provides an important tool in understanding the aberrant functional mechanisms in ADHD patients and assist in clinical diagnosis. Recently...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/105632 http://hdl.handle.net/10220/50238 http://dx.doi.org/10.1109/EMBC.2018.8513522 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental problem in children. Resting state functional magnetic resonance imaging (rs-fMRI) provides an important tool in understanding the aberrant functional mechanisms in ADHD patients and assist in clinical diagnosis. Recently, spatio-temporal decomposition via spatial filtering (Fukunaga-Koontz transform, ICA) have gained attention in the analysis of fMRI time-series data. Their ability to decompose
the blood oxygen level dependent (BOLD) rs-fMRI time series data into discriminative spatial and temporal components have resulted in better classification accuracy and the ability to isolate the important brain circuits responsible for the observed differences in brain activity. However, they are prone to errors in the estimation of covariance matrices due to the significant presence of atypical samples in the ADHD dataset. In this paper, we present a regularization framework to obtain a
robust estimation of the covariance matrices such that the effect of atypical samples is reduced. The resulting approach called as regularized spatial filtering method (R-SFM) further uses Mahalanobis whitening to lower the effect of two-way correlations while preserving the spatial arrangement of the
data in the feature extraction process. R-SFM was evaluated on the benchmark ADHD200 dataset and not only obtained a 6% improvement in classification accuracy, but also a 66.66% decrease in standard deviation over the previously developed SFM approach. Also R-SFM produces higher specificity which results in lower misclassification of ADHD, thereby reducing the risk of misdiagnosis. These results clearly show that RSFM provides an accurate and reliable tool for detection of ADHD from BOLD rs-fMRI time series data. |
---|