Energy-delay efficient asynchronous-logic 16×16-bit pipelined multiplier based on Sense Amplifier-Based Pass Transistor Logic
We describe an asynchronous-logic (async) 16×16-bit pipelined multiplier based on our proposed Sense Amplifier-Based Pass Transistor Logic (SAPTL) with emphases on high energy-delay efficiency. The multiplier is targeted for an async multi-core System-On-Chip (SOC). This attribute is achieved by sim...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/106112 http://hdl.handle.net/10220/17932 http://dx.doi.org/10.1109/ISCAS.2012.6272073 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We describe an asynchronous-logic (async) 16×16-bit pipelined multiplier based on our proposed Sense Amplifier-Based Pass Transistor Logic (SAPTL) with emphases on high energy-delay efficiency. The multiplier is targeted for an async multi-core System-On-Chip (SOC). This attribute is achieved by simplifying and optimizing the NMOS pass transistor stacks and decision-making C-element, therein to reduce the circuit area overheads and transistor switchings in SAPTL. Based on the simulations (@1V, 65nm CMOS process), the async 16×16-bit pipelined multiplier based on our proposed SAPTL approach features, on average, 31% shorter delay, 21% lower energy/operation achieving a total of 46% lower energy-delay product, and 16% lesser number of transistors when compared to the reported SAPTL approaches. |
---|