Multiplexed biomolecular detection based on single nanoparticles immobilized on pneumatically controlled microfluidic chip
A microfluidic chip integrated with pneumatically controlled valves was developed for multiplexed biomolecular detection via localized surface plasmonic resonance (LSPR) of single gold nanorod. The cost-effective microfluidic chip was assembled by polydimethylsiloxane (PDMS) layers and glass substra...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/106187 http://hdl.handle.net/10220/24981 http://dx.doi.org/10.1007/s11468-013-9661-4 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | A microfluidic chip integrated with pneumatically controlled valves was developed for multiplexed biomolecular detection via localized surface plasmonic resonance (LSPR) of single gold nanorod. The cost-effective microfluidic chip was assembled by polydimethylsiloxane (PDMS) layers and glass substrates with a precisely controlled thickness. The thin and flat microfluidic chip fitted the narrow space of dark-field microscopy and enabled the recording of single nanoparticle LSPR responses. Aptamer-antigen-antibody sandwiched detection scheme was utilized to enhance the LSPR responses for label-free biomolecular detection. This microfluidic chip successfully demonstrated the multiplexed detection of three independent analytes (PSA, IgE, and thrombin). |
---|