A novel ultra-low power two-terminal zener voltage reference
A novel ultra-low power two terminal zener voltage reference is designed and implemented. It realizes the concept of using sub-threshold region of the MOSFET to achieve a very low and stable output voltage within a two terminal circuit topology. This proposed voltage reference was fabricated with Gl...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/106794 http://hdl.handle.net/10220/17666 http://dx.doi.org/10.1142/S0218126612400178 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | A novel ultra-low power two terminal zener voltage reference is designed and implemented. It realizes the concept of using sub-threshold region of the MOSFET to achieve a very low and stable output voltage within a two terminal circuit topology. This proposed voltage reference was fabricated with Global Foundries 0.18-μm CMOS process, consuming only a very small die area of 0.0009 mm2. Experimental results, carried out on five different silicon samples, explicitly show that it can yield a stable output voltage of 0.22 V at room temperature. It achieves an average temperature coefficient of 6.4 ppm/°C across a wide temperature range from 0°C to 150°C with a standard deviation of 2 ppm/°C. Furthermore, it achieves an ultra-low power consumption of 2 μW. The load regulation is 20 mV/V. This simple and innovative two terminal device can be used to provide a very low and constant voltage difference between any two nodes in an analog circuit. |
---|