Tuning drug release in polyester thin films : terminal end-groups determine specific rates of additive-free controlled drug release

Modulating the drug release from polyester matrices independently of material properties would be beneficial to those designing biodegradable medical implants, such as drug delivery devices, stents and screws. However, the most common approaches use additives that often drastically alter the desired...

Full description

Saved in:
Bibliographic Details
Main Authors: Steele, Terry W. J., Huang, Charlotte Liwen, Kumar, Saranya, Iskandar, Aneesa, Baoxin, Aw, Boey, Freddy Yin Chiang, Loo, Say Chye Joachim, Venkatraman, Subbu S.
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2013
Online Access:https://hdl.handle.net/10356/107001
http://hdl.handle.net/10220/17865
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Modulating the drug release from polyester matrices independently of material properties would be beneficial to those designing biodegradable medical implants, such as drug delivery devices, stents and screws. However, the most common approaches use additives that often drastically alter the desired material properties. Recently, we have developed tools that allow gradient film formulations and high-throughput drug quantitation for the determination of parameter-specific correlations. We propose that modulated drug release can be obtained via additive-free mechanisms in polyesters by simply controlling polymer erosion through acidic terminal functional groups. Our results showed that drug release in poly(lactic-co-glycolic acid) (PLGA) formulations could be tuned to produce large ranges in drug release with relatively small changes in terminal acidic functional groups. For example, PLGA 53/47 thin films could be tuned to have 10–60% drug release at 14 days or 10–90% drug release at 20 days, depending on the PLGA/PLGA blend formulation and concentration of acidic terminal functional groups. A linear R-square correlation of up to 0.9 was observed for the acidic groups and percent drug release. Below a threshold of 1 part per thousand acidic groups, there was no increase in drug release, which has implications for polymer processing and film integrity.